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ACCELERATEL) LIFE TESTING - /
A PRAGMATIC BAYESIAN APPROACH

by

Frank Proschan /
Nozer D. Singpurwalla

ABSTRACT

In this paper we propose a model for accelerated life testing which differs

from those considered in the past. Our model does not require the usua l assumptions

about the failure distributions and the acceleration fu nctione . Our approach is

bayesian , and depends on the estimation of ordered failure rate functions at dif-

ferent stress levels. Since our model is nonparametric, and our approach is

( quite pragmatic , our results shoul d be of use to engineers working on accelerated

lif e tests , and biomet r icians involved in carcinogenic experiments.

Accession P~or
;~TIS GB1A~&I
2~iC TAB

~~-~rnLounced
.:u~1ication__________

~.i’ution/

‘
~- bility Codes

~vail and/or
~~ . . cpecial

—.-- - -S-~~~~~~~- . . -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .._ __ _ _  _ _ _ _ _ _ _ _ _ _ _



0. Introduction and Overview

In practice, long life items are often subject.d to larger than normal

stresses (doses) in order to obtain failure data in a short amount of test

time. It is common to test the items at more than one stress level, and

typically, more items are tested at the higher stress levels than those at

the lower stress levels; such tests are known as accelerated 01 overetresa

life tests. The basic aim is to make inferences about the life distribution

of the items at the normal stress levels using the failure data from accelerated
S tests.

The current approach to this important problem makes inferences under

parametric assumptions. This may be valid in some situations, and does yield

results which are appealing from a statistical point of view. However, an

engineer or a statistician working unt~ier less well-defined conditions may find

this approach too restrictive. For example, it is common to assume that at all

stress levels, failure times are governed by exponential distributions or ~leibull

distributions. In addition, a functional relationship between the parameters

of the failure distribution and the applied stress is assumed. Such a relation-

ship is known as an acceleration f unction or a time transfo rmation f unction;

examples can be found in Mann, Schafer , and Singpurwalla (Chapter 9, (1974)).

In two recent papers, Phatak, Zimmer , and Williams (1977) and Shaked , Zinsier

and Ball (1977) , the distributional assumption is dropped, but the requirement

is retained that the (unknown) failure distribution be of the same form at

the use and at all the accelerated stress levels.

— 1 —
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Clearly, there are many situation s where the above assumptions may not

be appropriate. Of particular concern is the assm~~tion that the failure

distribution is of the same form at all the stress levels. One reason for

this concern is tnat different stress levels may have different effects on

the mechanism which causes failure , and thus from a physical point of view,

it may be more realistic to allow for different forms of the failure distri-

bution at the different stress levels.

The approach that we propose in this paper requires neither distributional

assumptions nor the specificat ion of a time transformation function . Rather ,

our approach is Bayesian, and is prompted by what is actually done in practice.

The Bayesian point of view allows us to incorporate some a pri ori information

which is available in accelerated life tests. We would like this paper to

be construed as preliminary and pragmatic, and thus have not attempted to

give a full theoretical justification. Consequently, we would like to

invite mathematical statisticians to resolve the statistical problems posed.

1. Preliminaries

As stated before, in accelerated life tests the items are tests under

different stress environments. A stress environment may be characterized

by a single stress such as voltage or temperature, or by iltiple stresses,

each of a different type. We denote a stress environment by E, and the

set of all Vs by ~~. We assume that the element s of E may be ordered

according to the gnitude of their severity. Thus, for any two elements

and belonging to E, E~ . denotes the fact that is more

severe than B~. Let us denote the k accelerated stress environments by

_______________________ S ~~~~~~~~~~~~~~~~~~~~~~~~~~
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and the normal or use conditions stress environment by E
~.

We shall assume that the set E is completely ordered with respect to

the relat ionship > and that

E1 > E 2~~ ... > E k > E u.

The basic problem in accelerated life testing is to make inferences

about the life distribution of the it.. under use environment 
~ 

using

failure data obtained under accelerated stress environments El,E2 , . . . ,Ek,

where k � 1. In some situations, it is possible to obtain a limited amount

of failure data under the use conditions environment however , in practice,

these situations do not appear to be very common. Although having failure

o*~a under the use condition s environment has advantages , it s absence

is in no way detrimental to our approach. However , in order to obtain

results which are useful , it is necessary t hat k be moderate to large , 
S

and this is what we require. This requirement does not impose any practical

difficulties in many situations of interest , especially those involving

the accelerated life testing of electronic components and in bioassay experi-

ments on animal populations.

In order to introduce some notat ion , let us denote the failure distri-

bution of the items which are tested ti~der env ironment by F3, where

F~( O )  0 for all values of 3. We assume that F
3 

is absolutely con-

tinuous and thus f3 (x) , its probability density function , exists for

x c  (0 , ). If we denote 1 - F
3
(x) by P

3
(x), then A

3
(x), the f aiisix ’.

rat s of F
3
(x), is defined by

IL 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ S

S - _ 5 S  S .. ~ .aS 5 5 5 5  •S~ S~S..•:S.. 



- __ _______

- 4 -

f Cx)
A. (x )  s , ~~ (x) > 0.

F
3
(x)

We find it convenient and reasonable to assume that A
3

(x) is continuous

in x for x e [0, •). iVe use the terms failure rate and hazard rate

interchangeably. Since ... ‘ > E~ , it is logical to assume

that

� A~ (x) � ... � A~ (x) � A,~(x) (1.1)

for all x e fO, .).

Using failure data obtained under E1,E2,. . ., E,~, we would like to

obtain estimators A
3
(x) of X

3
(x), j • 1,2 ,.. .,k , such that for some

0~~ L< . and all xc [O , LJ,

- st_ St st .~A1(z) � A2(x) ~ ... ~ )~(x). (1.2)

St
The notation X � Y denotes the fact that X is stochastically larger

than Y; i.e., 
S

P[X�x] � P(Y �x] for all values of x.

In order to obtain estimators of A
3
(x), 3 ~ 1,2 , . . . ,k , which satisfy

Equation (1.2), we shall use a Bayesian approach. Under this approach,

Condit ion (1.1) is incorporated as a prior assumption. Our approach is in

contrast with that of Brunk, Franck, Hanson and Hogg (1~)66), who embody a

si*ilar but weaker condition than (1.1) in their likelihood function.
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Specifically, arimk et al. assume that the distribut ions are ordered , i.e.,

F1(x) ~ F2(x) � ... 
~ 
F~(x) V x.

The above condition is a consequence of Condition (1.1), but is not equi-

valent to it. Al so, the approach of Stunk et al. is not Bayesian.

We shall first present a methodology for a Bayesian estimation of the

individual hazard rate A
3 

(x) unconstrained by (1.1) .

2. Bayesian Estimat ion of a Single h azard Rate Function

For estimating an individual hazard rate A
3
(t) , we use the following

Bayesian procedure.

Let N
3 

(t) be the number of items exposed to the environment E3 
at

time t. Thus, N
3
(0) is the number of items that are initially put on

test in environment E
3
.

We hypothesize that the failure times are governed by a time-dependent

Poisson process with the probability of failure in [t , t.h] given by

~i3
(t)A

3
(t)h + 0(b) ,

where A
3
(t) is the failwe rate at time t under environment E

3
. 

S

For purposes of analysAs, we divide the time interval (o, U into

intervals of length h > o, where h is chosen to make L a w.~ltip1e of

h. For convenience, we denote (i-l)h by t~, N
3
(t1) by N3,~ 

and

A
3
(t~) by A

3~~ , for i — l,2,...,(L/h).

• ‘ t  — 

—

2 l ~~~~~~~~~~~~~~~~~ :~~~~~~~~~~~~~~~~~~~ _ _
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Let Xj j  denote the number of failures in Lt1, t.+h); if there

are no withdrawals, removals, censoring, etc., then 14. 
~. 1 • N. . - x3, + 3, 1 3,

It is helpful to clarify the above terms by the following diagram:

Number of failures — x
Number surviving N

3~~1 
j,2~

F-
oh.t1 lh—t 2 2h-t . •.. (i-1)hzt . ih t.~ 1 ... (

~J hst(9
The joint distribution of x 1,x 2’ ~~~~~~~~~~ L’h 1’ is given by the3, 3, 3,( i )+

tmiltivariate distribution

(L/h)+l x I
(N l~~ ~ ~1 

) bi
/ ~

i , (2.1)
i—I i’ 3,

where 
~~~ 

is the probability of failure of a specified unit in [t~~ ti+1).

with

(LLh) (LLh)
~j,(L/h)+1 

• - ) . P
3 1~ and X

j (L/h)+1 N
3,1 

- )
~ 

x
3 1

.

Denoting - 

~ ~3~~] 
by p 1, Equation (2.1) can be expressed

[Wilks (l~62), p. 151, Problem 6.13] as

(L/h) (N 
~
)I 

* x • N. 1-x 
~(

~
, ) j J p l 

( i— p .  ~
) ~‘ ~~~‘ . (2.2)

i.1 ~
Xj,i j,i~~j,i 

3,

• 
. 

-~ ~~~~~~~~~ 
— 

—
~~~~~~~~

—-
~~~~ 
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The P;j’S can be interpreted as the average failure rate over the

interval [t,, t~~1); that is, 
~;,i 

is the conditional probability that

an item which survived to time t~ will fail by time t1,1. In terms of

the A
3 ~~

, we can write

A. h — p .  . + o(h).
3, 1 3, 1

equation (2.2) provides us with a starting point for a Bayesian analysis.

2. 1. Prior Distributions for p.~~~

We shall confine the discussion in this section to the 3
th environmental

condition.

Suppose that the PJ , j’ ~ • 1,2,.. .,(L/h), 
are a pr iori independent

beta random variables with marginal densities

* 
F(a. 

~~ 
.) 

* 
a. .—l * ~~~. .—l

= r(a3 1)1’(83 jY ‘~‘LL~ 

3, 1 
Cl_!,,i

) 3, 1

It is of interest to note (cf. Lochner (1975) ) that the above prior

density leads us to a generalized Dir iohiet denaity for the

—

Given the N j i ’s and the x~~1
’s~ the posterior density of

is
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CL/h) F(a. •4.$ .+N. .) a. . +X.
3, 1 3’ ~~

,1 
~ 

3, 1 3,
i=l r(a

3,~
+xj,jJrC83,i

+N
31 1

_x
3, Y ~j,i

F (2.3)

* ~~~. +~4 . •
_

~~~~• ._
~~

(1— p . ~~ 
~~~~ 3 , 1 3 , 1

J , ].

.1

see DeGroot (1970) p. 160.

3. A Bayesian Estimation of Ordered Average Failure Rates.

In a l3ayesian context , Condition (1.1) leads us to the requirement that

for every fixed value of i ,

* 
St~~~~
� r~,1 for 5 = 2,3,.. .,k. (3.1)

Thus, our prior distributions on p~~1 1  and ~~~ will have to be

chosen such that

* *P[p4 1 . � p] � P(p. . ~ pJ for all p � 0. (3.2)
.1 3, 3.

One way of achieving Condition (3.2) is to assume that the parameters

* *of the prior distributions of P3..1,1 and satisfy the following con-

ditions for every fixed value of i:

a . �aj,
~ j—1 ,i

and (3.3)

~ 
B3_ 1 , 1 for 3 a 2 ,3, . . .  ,k.

For a proof of the above statement , see Appendix A.

S 
S

—---a-- - ~~~~~ ~~~ - - - - -~~ 
-

- - -5--— — _,‘ — __ _ _S_ _ 5 . ~._ s_S -~~.p ~~~~~~~~~ 5 — —- - _S S - - S-__
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In order to be assured that Condition (3.1) is also satisfied with

respect to the posterior distributions of p
~_1,~ and 

~~~~ 
it is suf-

ficient (see Appendix A) that , for every fixed value of i

+ X
i i  

� a3_1 1~ 
+ x

3 1 1 1

and (3.4)

B3, 1 + N3 1  - X
i i  

� + N
3 1 91 

- x
5 1 ,~ for 3 • 2,3,...,k.

In order to make our Bayesian analysis more practical , we will have

to reduce the number of prior parameters. One way of doing this is to assume

that

- a for all values of I and J’

and that (3.5)

— B3 for i •

Thus, the prior distribution of each P;j~ I — 1,2,.. .,(L/h) , is a beta with

parameters a and B) . This plus Conditions (3. 3) and (3.4) lead us to the

following remarks.

The first part of Condition (3.4) will be satisfied whenever X
j j  ~

for 3 — 2 , 3,.. ., k . That is, the number of failures in the interval [ti, t~•h)

under environment E
5 

must not be greater than the number of failures in the

same interval under environment Ej_i~ 
for all values of 3. Because Condition

(3.4) will have to be satisfied for every fixed value of i 1 a 1,2 , . .. , (L/h) ,

- ~~--- -~~~~~~~~.— S -

- S - ~~~5- S~ •5 5S5~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘ 
__.,___.~_~ __._5 - -
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a reasonable strategy is to have N. ~ ‘( N. 1 1 for j  — 2,3,.. .,k. That3,~& 3— ,
is , we shall put more items on test (initially) under the more severe environ-

Inent E. , than under the environment E.3—1 3

Since N. - = N. - 1 - x. . i = 1,2,.. . ,(L/ h) , the second part
3, 1 3, 1— 3 , 1-

p of Condition (3.4) can be written ac

+ N
5 1 ,1~1 

� + N
5 1~1 

for j = 2.3,...,k. (3.6)

An interpretation of the ahove condition is that , for every fixed value

of i, the nun’ber surviving at the start of the (i+l) 5t interval plus the

prior parameter B~...1 for the environment must be smaller than the

corresponding sum for the environnent I~~. Thus, whether the second part of
S 

Cond..tion (3.4) is satis9.ed or not, depends not only on the number of failures

in the ~~~ inte:val and the number surviving, but also on the values of the

pric .’ parE.’ieter~ and 
~~~~~ 

Since the number of failures in a particular

irterval i~~ a unction of the severity of the env ironment and the number on

~~~ and since has to be le~~ than or equal to 8~ (see Conditions

.S) and (3.6)), it is reasonable to have 
~~~ 

< whenever E
3 

c E
3 1

.

T:.at is, the values of the prior parameters 8j-l and are indicative of

~he re l ative severity of the environnental conditions E3 1  and E3. Since

E1 
> E2 ‘ ... ‘ E~, we will choose the 83

1 s such that 81 < 82 ... <

~d the values of the 83
1 s will  be in.’icative of the severity of the environ-

•r ’i’tal conditions E3, 3 — l ,2 ,..., k.

If the prior parameters ~~~ 5 — 12 ,...,k, and the data from the

accelerated life test, x~ ~ 
and N

3 ~~~

, i • 1,2 , . . . , (L/h) , are such that
.1

L ~~IJI~ IT ~~~- ••~~~~ -
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Condition (3.4) is satisfied for every fixed value of i, then the stochastic

ordering Condition (3.1) will be automatically satisfied with respect to
* * *the posterior distribution of  (p . 1 p 2,...,p L’h’~ 

I f  the above is3, 3, j,( ,

not the case, then we will have to pool the adjacent violators using the

pooling procedure described in the next section.

4.0. The Pooling of Adjacent Violators.

The procedure for pooling adjacent violators described here is commonly

S used in isotonic regression; see Barlow , Bartholomew, Bremner and Brunk (1972).

The pooling is between the violators of the assumed ordering; that is,whenevsr

< x
3 1 1 then x3 1 1  and x

3~~ 
are pooled.

Consider the time interval [(i-l)h,ih); by Condition (3.4) we require

X .~~~~~X... �.. .�x. �x. . � . . .� X .  -l,i ~,i ~—1 3, 1 K, ].

and

81 + N1,1 - � B~ + N2~~ 
- x2 1  ... + N3 1 1  

-

+ N
3 1  

- X
3,1 

� 
~ 
8k + Nk j  - Xk i .

If the reversal occurs, that is, if  either

< X
i i

or if

6j-l + N3_ 1 ,1 — x:j ...l i > 8~ + N3, 1 —

then we pool the violators and replace them as shown below.

S J — -~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~ -.5-
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l2 

~~~~- 
-

Replace both x
3 ~ 

and x
3 ~ 

by ~(x~ -1,1 + x3 ~ 
and

+ N3.111 — x3_ 1 1 1 and 83 
+ Nj i - Xj j  

by

~~~~ 
+ B~ + N3 1  ~ 

+ N3 1  
- X

3~ .1, 1 
- x3,1).

We now test to see if the new sequence is properly ordered, i.e.,

� X~~~j � ... � ~<x3..1~~ 
+ x

3~~
) 44:x~_11~ 

+ x
3 1
) �

~

and

+ N1 i  - X1j  ~ ... � ~.(8J~~ 
+ B~ + N3_ 1 ,1 + Nj i  - X

3 1 11 
- x3,1)

+ 8~ + N3_1 ,~ + Nji - X
3~~1 

- x3 1 ) � 
~ 
8k + Nkj  

- X
k,i.

If a reversal exists in either of the new sequences, then we replace again
S by appropriate averages. Thus, if

+ Xj j ) — ~{X3_1 1 j 
+ x

5 1 ) 
<

or if

+ 8
3 
+ N3 1 1  + N

3~~ - x
3 1 ,1 

- x3,1) > + N
3~ 11 -

then we replace each one of the three by the corresponding average

+ X
3 ,~ • X

3~~1,1
)

_ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(in the first sequence) and

+ 8
3 
• Bj+ i + N3_1 ,~ + N3~~ 

+ N
3~11 

- x
5~ 1,1 - x

3~~ 
-

(in the second sequence) .

We cont inue the above procedure until all reversals in the interval

((i-l)h, ih) are eliminated. We use this pooling scheme for each of the

(1./h) time intervals to achieve the desired ordering.

4.1. Some General Comeents Regarding the Pooling Procedure

The following comeents regarding the pooling of adjacent violators will

be helpful.

1. An e,~ essive amount of pooling occurs if the relationship Specified

by Condition (1.1) is incorrect, or if the environmental conditions E1IE2,...,EIJ~
are too similar to each other.

2. If A
3

(04) 0 for 3 • l,2,...,k, then it is reasonable to expect

that some pooling will be necessary at the lower values of i, I - 1,2,... ,(L/h).

For many practical situations, it is reasonable to assume that the failure

distributions F3, j — l,2,...,k,u, have increasing failure rate (see Barlow 
- S

and Proschan (1975)). If we wish to make such an assueption, and incorporate
it into ow analysis, then, for each value of 3, we must have in addition to
Condition (3.1),

Aj,i—1 S

or that

* 
st~~
~ P3 1. i • l ,2,..., (L/ h) . 

- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -—--
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The above condition will further co~~1icste our pooling procedure; we

shall therefore not assume that the F
3 

are increasing failure rate.

5. The Posterior Distributions of the p. 
~~~~~.1.

It is apparent from the discussion in Sections 3 and 4 that the posterior

distributions of the p~~~’s depend on the outcome of our pooling procedure .

The posterior analysis is straightforward if no pooling is necessary, for
* * *then, the posterior distribution of (PJ I.PJ 2....IPJ (~,~)+~) ~ sii~ 1y

S CL/h) r(~.84 .N 4 ~ * a+x 
~~ • 8 44 i~

X4 ~~
( ) (1— )

~~ 
r(a+x3~~)r 

3
+PJ

3~~ -x
3~~) i.i i~i

for 3 — 1,2,...,k.

Under the ass~~ tion of a squared error loss function, a Bayes estimator
*of P3,1. i • 1,2,...,(L/h), 3 — 1,2,. ..,k, is siiçly the posterior mean ;

that is

—
, I (u+8

3
+N

5 ~
) ‘

(see DeGroot (1970) P. 40) .

If pooling is necessary, then some or all of the x
3~~

’s and the

(B
3
.N
3~~

) ’s will be replaced by their appropriately pooled averages. In

any case, the general expression for p
3 ~ 

will be of the form given above.

5- 

- - - I ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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6. A Model for Extrapolations to Use Conditions Stress.

Oiw analysis leads us to an array of Bayes estimators of the average

failure rates over intervals of length h for each environmental condition.

Because of our pooling strategy, the Bayes estimators will be correctly

ordered. That is, for each fixed value of I,

� ... � ;;~. (6.1)

Given the PJ,j’SJ 3 — l,2,... , k and I — 1,2,...,(L/h), our goal is

* * *to predict 
~u,l’~’u,2’ ”’~ u, (L/h)’ the average failur. rates over th. time

intervals [(i-1)h,ih) , i — l,2,...,(L/h), respectively, under the use

conditions environment B
~
.

In the absence of any knowledge about a relationship between the average

failure rates and the values of the var ious stresses which constitute an

environment , some form of an ass~~ tion is essential. This is particularly

crucial if 1, the nuaber of distinct environmental conditions of interest,

~ small. If, however, k is large, then a relationship between the average

failure rates and the stresses can be eepirically obtained; this is what is

often done in practice.

When k is small, we shall post ulate the following sieple but reasonable

relationship between the average failure rate estimates.

For some k un~ tot~wz constants WO, Wl ,...,Wk l ~ 
we assume that for each

value of i, i •

• w~ + w1i~~1 ~ 
+ W2P~~2Ii 

• + W1~ 1P ,j. (6.2)

H 

_ _ _ _
- -~ r~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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The above relat ionship states that the average failure rate over a

part icular time interval under the environmental condition Bk is a weighted

sum of the average failure rates over the same time interval under the condi-

tions Ek I . Ek 2 , . . . , El . This is reminiscent of an autoregressive pro cess

of order k-i which has found useful applications in forecasting (see Box

and Jenkins (1975)).

In order to make the above relationship more meaningful we shall require

that the environmental conditions B.5 c Ek i  c •.. c B2 < E~ increase in

magnitude of severity by the same fixed amount. For example , if B
3 

represent s

a single stress, say a voltage stress V3, then we shal l require that V3 1  - V3 — C,

where C is some suitable constant, 3 — l ,2,...,k.

Since Equation (6 .2) holds for i • 1,2 ,... ,(L/h) , the least squares

estimators of wO,wl,...,wk_l can be obtained in a routine manner. These

estimators are denoted by WOi W l I•••I Wk l •

If the increase in the magnitude of the severity of the environment from

Eu to E.~ is the same as that from E
3 

to E3 1 , 3 — 2,3,... k, then an

estimator of the average failure rate under E
~ 

is given by

1
~u,i • + ‘~1~k,i + + Wk_ 1,iP;,i (6.3)

(LLh) 
~.S for i — 1,2, . .. ,(L/h) , and 

~u (L/h)+l ~ - j~~ ~u 1i

If the increase in magnitude of the severity of the environment from
S to Bk is two t imes that from B

3 
to £3_ li 3 — 2,3,...,k, then we iterate

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _
-

_____________________________________________________________________ _________ -5- 
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upon Equation (6.3) one mere time to obtain the desired result. Thus, in

principle, we can iterate upon Equation (6. 3) as many times as is necessary,
depending upon the separation between E

~ and Bk
*

By th. definit ion of 
~~~~ 

the probability of an item surviving to time

t~ (assumed a suitiple of h) under environment is

* t / h  
*!~

(t ~ • n 
~~-P~ i~i—i

— *Thus, we have the following as an estimator of Fjt ):

* 
t*/h 

~~*!~
(t ) — ii (I-pu ~~i—i

where the are given by (6.3).

The properties of this estimator have not been studied. The estimation

procedur. has been proposed as a practical method for providin g answers in 
S

the difficult area of accelerated test ing .

__________________ ~~~~~~~~ ~~T
S - ~~- - -~~~~~~~~~~ .~~~~~~~~~~ -~~~~ - 
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- —S—-~~~ ~~~~~~~.
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APPENDIX A.

In this appendix we determine sufficient conditions under which two beta

random variables are stochastically ordered. The results may already be known;

however, they are included for completeness.

The notation and terminology are taken from Barlow and Prosthan (1975).

a-i -x
We first note that a gamma density f(x, a) — r(:) is TP2 in

~ a-i
Cx, a). Therefore, ~(x , a) - f 

~~~ 
~~ dX is TP2 in Cx, a) since

x

~(x , a) — J f(y a)H(x, y)dy, where H(x, y) - I for y � x and H(X , y) - 0

H( x1, y1) H(x1, y2)
y c x. (Note that ~ 0 for x1 

c x2, y1 
< y2. Thus,

H(x2, ‘1) H(x2, y2)

H(x y) is TP2, and so the composition of f, H is TP2.)

Since !(x, a) is TP2, then for x1 < x2, 
~~ 

<

T(z1, a~) !(x1, 02) 1 1
� 0. Choose x - 0. Then � 0

P(x2, 0~~) (x2 1 02) 1 
~(x , a~) P( x, e12)

for 0 c x c ., a2. Thus , r(x, 02) � ~~(X , ul
) for < a

2 
and x > 0.

We have shown :

1. Lemma. Let X0 be a gamma r.v. with shape parameter a. Then

is increasing stochastically in a.
a~-l

2. Proposition. Let V have density ~ ~ e~
’, i — 1,2, and V0(0j~

S 

VII
be independent . Then X 

~ 
has beta density

2 01 02

- 1 8 -

_ _ _  - ~~~~~ ~~~~~~~~~~~~~~

— — ~~~~~~~
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r(a1+a2) as-i 02
_i

x (l-x) for 0 ~ x £ 1. (Hogg and Craig, 1970,

p. 134).

3. Theoz e~. Let X have beta density f(a ,a2, x) . Then X01,02 1

is increasing stochastically in 0
1 and decreasing stochastically in 02.

V Va a
Proof. Write X0 ,~~~ 

• 
~ +

1
y ~ X0 ~ 

- 
~~ , ~ where 02 < 02.01 ~2 

02
St St

Por fixed V • X ,. By unconditioning X > X  for01 ~~~~~~~ 01,02 013 0
2 

01,02
02

St
By similar reasoning, we can show X � X , for a~ c01~

02 U1~
Q2

_ _ _ _ _ _ _ _ _ _  
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